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The Aharonov-Bohm shift in a closed system is considered. The solenoid is a 
charged, rotating cylinder which is electrically neutral. This model of Henneberger 
and Opatrny has a Hamiltonian which is a quadratic form. This quadratic form 
is transformed to normal coordinates, so that the stationary states become self- 
evident. It is shown that, in the original system, it is the kinetic angular momentum 
which is quantized. Solutions of the problem for an electron inside the solenoid 
are discussed. It is shown that the rotating cylinder exhibits different behavior if 
the electron is in the magnetic field or if it is in the external region. An external 
field approximation which replaces the cylinder by a constant magnetic field 
therefore cannot yield a correct solution of the Schr6dinger equation which is 
continuous at the surface of the solenoid. 

1. I N T R O D U C T I O N  

The A h a r o n o v - B o h m  (1959) effect is a shift  in the interference pat tern 
o f  an e lect ron beam caused  by the introduct ion o f  a whisker  o f  magne t ic  
flux. The  electron b e a m  must  be spli t  into two paths,  one passing the f lux 
whisker  on each side. 

It is often stated that this effect is an effect  o f  the vector  potential ,  a 
quant i ty  that is not  observable .  This  viewpoint ,  whi le  not  wrong,  is mis leading .  

The  A h a r o n o v - B o h m  (AB) effect  has its roots  in c lass ical  e l ec t rodynam-  
ics. It was a l ready known  by Thomson  (1904) that, in Cou lomb  gauge,  the 
quant i ty  (e /c )A(r )  is actual ly  the e lec t romagnet ic  m o m e n t u m  due to the 
e lec t ron ' s  electr ic f ield and the magnet ic  f ield o f  the so lenoid  (flux whisker) .  
This fact  has rece ived  far too litt le attention in s tandard texts on e lec t rodynam-  
ics. It does  appear  in the text by Konopinski  (1981). 
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While it is true that the electron experiences no force in the AB effect, 
it is not true that there is no transfer of momentum. There is a changing electro- 
magnetic momentum, and its rate of change must be balanced by a force on 
the solenoid. This has been discussed by A1-Jaber and Henneberger (1992). 
Moreover, since the electron's magnetic field penetrates the solenoid, there 
must be an exchange of energy between the total magnetic field and the source 
of the current in the solenoid, as discussed by Zhu and Henneberger (1990). 

These considerations led Henneberger and Opatrny (1994) (HO) to con- 
sider an isolated system consisting of an electron and a spinning charged 
cylinder. The cylinder has a compensating charge on its axis, so that the only 
field in the external region is magnetic. HO considered a classical electron 
interacting with a massive quantum cylinder. The HO result is that the cylin- 
der's wave function acquires a phase shift which is equal in magnitude but 
opposite in sign to that of the usual electron wave function phase shift. An 
analysis similar to that of HO was carried out for the Aharonov--Casher 
(1984) effect by Yu and Henneberger (1996). These authors showed further 
that in any closed system, infinitesimal phase shifts must always add to zero. 
The derivation is almost parallel to things that can be found in textbooks, 
but the result is important. As a consequence of this theorem, one may 
conclude that such phase shifts cannot affect statistics. Thus, if anyons exist, 
they can have no connection with Lagrangian dynamics. 

The HO result may not seem compelling to some readers. It is therefore 
worthwhile to consider solutions of the Schrrdinger equation for the complete 
isolated system considered by HO. 

In this work, the system considered by HO is altered slightly. The line 
charge along the axis of the cylinder is replaced by a stationary charged 
cylinder having radius r -- a + ~, where ~ is infinitesimal. The cylinder 
carries a surface charge -or. In this way, all electric fields have been eliminated 
(except for the infinitesimal region between the cylinders). The magnetic 
moment of inertia of the rotating cylinder is easily shown to be unchanged 
from the value given by HO. 

The change described above allows a discussion of the electron-magnetic 
field interaction in the interior region of the solenoid, as well as the exterior 
region. The present treatment gives the first demonstration of the physical 
problems involved in the solution of the Schrrdinger equation at the boundary 
of the rotating cylinder. 

. NORMAL COORDINATES IN THE MODIFIED HO MODEL 
F O R  A N  E L E C T R O N  IN T H E  E X T E R I O R  R E G I O N  

The Lagrangian of the system is 

1 1 e h 1 
L = ~ ~/a + 2 i~rZqb2 + -c2-~w f)~ + 2 102 (1) 
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where i~ is the electron mass, r and q~ are the electron coordinates, and 0 is 
the angle turned by some fiducial mark on the rotating cylinder. The vector 
potential at a distance r is 

A,p = 2"trr' with �9 = h0 (2) 

The constant h is given by 

h = 4'rt2a3tr/c (3) 

where cr is the charge/cm z on the rotating cylinder and a is the radius of the 
cylinder (assumed to be very small). The moment of inertia of the cylinder 
is the total moment, i.e., the sum of the mechanical and electromagnetic 
moments of inertia. Details are given in HO. 

The dynamic nature of the AB effect is already evident in equation (1). 
The interaction of the electron with the vector potential has been replaced 
by the interaction with its source, the rotating charged cylinder. 

The most direct (as well as the most enlightening) method of treating 
the Lagrangian is to transform it to normal coordinates. We carry out an 
orthogonal transformation to new variables 0, ~ such that 

= 0 cos "q + ~ sin -q 

q~ = - 0  sin "q + q~ cos "q (4) 

The inverse transformation is, of  course, 

0 = 0 c o s ' q - ~ s i n ' q  

r = 0 sin "q + ff cos "q (5) 

We assume the angle "q to be time-independent. This assumption will 
be seen to be justified in the limit I > >  i~r 2. If this inequality fails, "q will 
depend on r, which in turn depends on time. 

This assumption yields 

0 = 0 cos "q - ~ sin "q 

t~ = 6 sin "q + ~ cos "q (6) 

The Lagrangian of equation (1) becomes 

1 1 #xr2(~ 2 sin2 + ~2 2 ~  sin L = ~ ~ 2  + 2 "q cos 2 "q + cos "q) 

e h ~2 ~ cos 2 ,q + _ _ _  (~2 sin "q cos "q - sin rl cos "q + - ~(~ sin 2 "q) 
c 2"rr 
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1 
+ 2 1(62 c~ n - 266  sin "q cos n + 62 sin2 "q) (7) 

The angle -q is chosen to have a value that causes the 0r  term to vanish. 
This condition yields 

Ixr z sin "q cos "q + ~ (cos 2 "q - sin 2 "q) - I sin "q cos -q = 0 (8) 

Equation (8) has the solution 

eh ek  
tan 2"q "rrc(l - Ixr 2) "rrcl (9) 

For I > >  Ixr 2, the assumption "/1 = 0 is valid. Interest here is in the case 

ek 
sin "q 2,rrcI and cos "q 1 (10) 

The Lagrangian then becomes 

1 [~  eh 1 ] 0  2 
L = ~ IX/.2 + IX/.z sin 2 .q + ~wc sin r I cos "q + ~ I cos 2 ~q 

+ ~ r2 cos 2 ~1 - ~ sin ~ cos ~1 + ~ I sin 2 "11 6 2 (11) 

The canonical momenta are 

OL 
for - - Ixi" 

Oi" 

fo~ - - -  - IX r2 sin z ~1 + e_.h_~ sin ~1 cos ~1 + I cos 2 ~1 (12) 
O~ "rrc 

go~ - 060L - [ixrZ c~ - eh sin "q c ~  + l 

It is convenient  to introduce new quantities i and IX: 

i Ixr2 sin2 "q + eh . = - -  sm -q cos "q + I cos 2 -q 
~c  

[ c  _ e h s i n ' q c o s ~ l +  / ] 
IXr2 = Ixr2 OS2 "q 'rrc IX r2 ~ sin2 ~] 

In the limit I ---) ~, [ ---) I and IX ---) Ix. 

(13) 
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The Lagrangian now has the simple form 

1 1 1 ~ z  (14) L = ~ t  a + ~ 7 4 2  + 

and the Hamiltonian is 

1 l 1 
i-/= ~ ~ + ~ ~,~4 ~ + i6 ~ 

_ go~ + go 2 ga~ (15)  
- 2---~ 2- -~  + 2 i  

The purpose of this section is the discussion of  phase shifts. These are 
first order in the electronic charge e. We note that i differs from I by a term 
of order e211. The quantity g~ differs from 1. by a term of the same order, We 
may therefore put 0- = 1. and [ = I in equation (15). 

The Hamiltonian of equation (15) then becomes 

a ,=*~  gal + ga~- 

21, 2p~r 2 2--}- (16) 

The eigenstates of  this Hamiltonian can be immediately written down. 
They are 

+(k, r, Cp, ~) = Jm(kr)eim% iMo (17) 

with m and M integers, and the electron kinetic energy given by hZk2/21*. 
We must, of course, exclude the m = 0 states; these are nonvanishing at r 
= 0. The remaining states form a complete set on the space of functions that 
vanish at r = 0. We assume the radius of the cylinder to be effectively zero. 

Equations (1) and (16) show go0, go~, go6, go~ to be conserved quantities. 
In order to understand the result of this work, we must identify the physical 
significance of the angles 0 and ~. We have 

eh 
go o =  I0 + ~ c  (p' gag=16  = Mh 

eh 
go, = 1*rZ,:p + ~ c  0 go~ = 1*r2('p = mh (18) 

go, - ~o~ = 1.r2(@ - 4) + eCI) 
2'rrc 

With the second of equations (6), this becomes 

eCI) e ~  
- go~ = 1*rZ6 sin'q + ~ = ixr 2 ~ - ~  + ga~ 

eCI) 

2wc 

(19) 
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The approximation tzr z < <  I then gives 

g o , -  ~ = - h a  (20) 

with a = -edOlch, as defined by AB. 
Equation (20) shows that go~ is the kinetic angular momentum of the 

electron. In the AB problem, it is the kinetic angular momentum (not the 
canonical angular momentum) which is quantized. This writer has been 
insisting on this for the past 16 years (Henneberger, 1981). 

The angles 0 and # are just the angles that 0 and q~ would have in the 
absence of any interaction. Multiplication of the first of equations (5) by the 
(conserved) canonical angular momentum of the cylinder yields 

ehh  
Mh(O - O) = -CpMh sin -q = - M  ~ - ~  q0 (21) 

where terms of order e 2 have been neglected in the last equality. The relation 
M h M I  = �9 yields 

Mh(O - O) = -e_____~_~ hq~ = ahq~ (22) 
ch 

Equation (22) may be written 

A f  go0d0 = - - A f  go,p dqo (23) 

where the symbol A refers to the change in these quantities due to the AB 
interaction. Equation (23) is just the result of HO. 

For the skeptical reader, we provide a second proof that it is the kinetic 
angular momentum that takes on integral values of h in the AB problem. 

We combine the equations 

h 0 
- - -  ~ = m h ~  ( 2 4 )  
i 0~ 

and 

O O 0 
- -  = cos "q - -  - sin "q - -  (25) 

The approximation sin -q ~ tan -q and cos -q = 1 yields 

h Ot~ eX h Ot~ (26) 
m h ~  - i Oq~ 27rcl i O0 
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Putting 

h O0 _ 
i O0 
- -  - 160 and hi) = 

then yields 

1 OO eqb 
mt~ - i Oq~ ch ~ (27) 

Equation (27) shows that when the original canonical angular momentum 
operator acts on an eigenstate of (1/i) 0/0q~, we have 

1 er 1 
m = ~ L~0ca n ch h L~can + Ot (28) 

Again, we see that in the AB problem the eigenvalues of (l/h)L~ca. are m - et, 
where m is an integer. 

3. THE INTERIOR REGION OF THE CYLINDER 

In the interior region of  the rotating cylinder, the problem has the 
Lagrangian 

1 1 e h r  2 1 
L = ~ [zk 2 + ~ I~r2q5 2 Jr --c,rra20(p + -~ 162 (29) 

The canonical momenta are 

OL _ I0 + eh'r2------~ (30) 
go~ - O0 c2~ra 2 

OL ehr20 OL 
~ -- O( 0 I~r2@ + c21ra 2, ~'~r Of" ~l~l" 

Because of the factor r E in the interaction term of equation (29), it is 
no longer possible to transform to normal coordinates by means of a single 
rotation, as in the previous section. Fortunately, a satisfactory discussion is 
possible in terms of the original coordinates. 

The angular momenta ~o0 and N~ are conserved quantities. 
Now, ~o 0 has the value IdMh, where �9 is the value of the flux when 

r -- 0 (or equivalently, when no electron is present). 
Then 6 is given by 

6 = dp ehr2(p -- ~ + AO (31) 
h c2Ira2I h 
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The cylinder phase shift is 

A ( l f  ) I f  I f  er 2 ~od0 = ~  g o o A 0 d t = - - ~  ~--d~PcZTra2 eB I r2 = -s  

(32) 

Over one revolution of the electron in its orbit, the phase shift is 

eB e~'  
-c-'-h " (area of orbit) - ch (33) 

where ~ '  is the flux encircled by the orbit. The conserved electron canonical 
angular momentum is 

ekr20 er2dp e2k2r 4 

~ = ~r2~  + c2ara------ ~ - I~r2~ + c27ra~ c24,tr2a4i (34) 

In the limit I ~ 0% the term in e2[l in equation (34) may be dropped. The 
second term of equation (34) is the vector potential term. It gives a phase 
shift per cycle of 

e ~ A~rd~p = e r2B e e ~ '  (35) 
h---~ hc ~ - -~  dq~ = hc B .  (orbit area) - hc 

The phase shifts are again equal and opposite, as in the exterior region. 
It should be noted that for an AB experiment performed inside the solenoid, 
the phase difference would be given by equation (35) with qb' being the flux 
between the two paths open to the electron. 

It is enlightening to check the energy balance. The reader will recall 
that we have defined the flux so that �9 = k0 when the electron is at the origin. 

For electron orbits passing through r = 0, go~ vanishes. The change in 
the angular velocity of the cylinder is then 

A0 = ekr2~  
c27ra21 (36) 

The energy change of  the rotating cylinder is 

_ e AEcy I = 10A0 ~- ~Per2Cp Be 1 r2 ~ = - - v  �9 A (37) 
c21ra 2 c 2 c 

This last term is the negative of the overlap magnetic field energy. The reader 
will recall that 0 = k0 when the electron is at the origin. When r = 0, v �9 
A vanishes. 

Equation (37) shows that the energy shift is in general time dependent, 
reflecting a lack of constancy in the angular velocity of the cylinder. As the 
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electron moves in its orbit (which is fixed in space), kinetic energy of the 
cylinder is continually being exchanged with magnetic energy. 

The average energy shift may be computed by means of a single semiclas- 
sical argument. The phase shift/cycle for the cylinder was found in equation 
(33) to be - e ~ ' / c h .  

A continuous shift in phase is just a shift in angular frequency. This 
frequency shift is the phase shift divided by the period of revolution of 
the electron. 

Hence 

h e ~ '  eB e2B 2 �9 (area of orbit) 
ch 2"rr~c 2,rrlxc 2 (38) 

= 

From equation (37), 

= Be ( 1 eB 
(aEoy,) - - ~  j ~ r2~dt �9 - -  (39) 

2ar~c 

The integral in equation (39) is the area of the electron orbit. Equations (38) 
and (39) yield 

1 
(AEcyl) = - ~  I~v 2 (40) 

The purpose of this discussion has been to show clearly the difference 
in behavior of the cylinder when the electron is in the magnetic field and 
when it is in the exterior region. When the electron is in the magnetic field, 
the cylinder undergoes a continuous phase shift, i.e., an energy shift. This 
energy continually oscillates between kinetic energy and energy of the mag- 
netic field. As in the AB effect, the kinetic energy of the electron is unchanged. 

An electron in the exterior region travels in a straight line. The cylinder 
gets only a one-time phase shift--as does the wave function of the electron. 

If now one could muster the energy to solve the Schr6dinger equation 
for this composite system, electron plus cylinder in all of space, one would 
find a correlation between the coordinates of the electron and the kinetic 
angular momentum of the cylinder. Even the qualitative behavior of the 
cylinder is different in the two cases. 

We have already seen that in the AB problem, the price that one pays 
for making an external field approximation is that the single-valuedness of 
the electron wave function must be sacrificed. If one were to go further, 
using an external field approximation over all space, one would omit a degree 
of freedom that is correlated with the motion of the electron. This comes at 
a still higher price. The solution is good in the interior region. However, the 
behavior of the omitted cyclinder is quite different as the electron approaches 
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the boundary of the cylinder from the two sides of the cylinder wall. It is 
clear that the wave function obtained under such an omission cannot possibly 
be continuous at the cylinder wall. This lack of continuity was discussed by 
the author (Henneberger, 1984) 13 years ago. The earlier derivation was 
based upon continuity of the transport of tangential probability current across 
the boundary of a solenoid. 

4. CONCLUSION 

In summary, it has been shown that: 
1. In order to discuss the AB effect in a system that truly conserves 

energy, one must represent the solenoid as having an internal degree of 
freedom. Here it has been represented as a rotating cylinder. Solutions of the 
complete AB problem (electron plus cylinder) have been given. The earlier 
result of Henneberger and Opatrny has been demonstrated for the composite 
system by means of a transformation to normal coordinates. The method of 
diagonalizing a quadratic form was applied long ago to light scattering prob- 
lems by van Kampen (1951) and Steinwedel (1955). The method goes back 
to the early days of quantum theory, and the transformation of Kramers (1938). 

2. The model has been extended to the case of electrons confined to the 
interior of the cylinder by the magnetic field. Such states form a complete 
set. Since the electron cannot sense the presence of the cylinder wall until 
it reaches it, any state, bound or not, may be expanded in terms of states for 
which the magnetic field extends to infinity. 

3. The rotating cylinder exhibits different behaviors when an electron 
is on different sides of the cylinder wall. The external field approximation 
forces a discontinuity in the wave function at the cylinder wall. The AB 
effect has historically aroused so much interest because it has been (and 
continues to be) ill understood. The standard papers on the AB effect have 
the common problem of having too few degrees of freedom. The torque on 
the solenoid is typically assumed to vanish. It does not. The electron kinetic 
energy is constant, but the magnetic energy (which is typically ignored) is not. 

REFERENCES 

Aharonov, Y., and Bohm, D. (1959). Physical Review, 115, 485. 
Aharonov, Y. and Casher, A. (1984). Physical Review Letters, 53, 319. 
AI-Jaber, S. M., and Henneberger, W. C. (1992). Nuovo Cimento, 107B, 23. 
Henneberger, W. C. (1981). Journal of Mathematical Physics, 22, 116. 
Henneberger, W. C. (1984). Physical Review Letters, 52, 573, 
Henneberger, W. C., and Opatrny, T. (1994). International Journal of Theoretical Physics, 

33, 1783. 



A h a r o n o v - B o h m  Shift as a Shift in Normal  Coordinates  2077 

Konopinski, E. J. (1981 ). Electromagnetic Fields and Relativistic Particles, McGraw-Hill, New 
York, p. 158. 

Kramers, H. A. (1938). Nuovo Cimento, 15, 108. 
Kramers, H. A. (1938). Grudlagen der Quantentheorie II, Leipzig. 
Steinwedel, H. (1955). Annalen der Physik, 15, 207. 
Thomson, J. J. (1904). Elements of the Mathematical Theory. of Electricity and Magnetism, 

3rd ed. Cambridge University, Cambridge. 
Van Kampen, N. G. (1951). Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske 

Meddeleser, 26(15). 
Yu, X., and Henneberger, W. C. (1996). International Journal of Theoretical Physics, 35, 393. 
Zhu, X., and Henneberger, W. C. (1990). Journal of Physics A: Mathematical and General, 

23, 3983. 


